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Abstract. We present a new construction of divisible e-cash that makes
use of 1) a new generation method of the binary tree of keys; 2) a
new way of using bounded accumulators. The transaction data sent to
the merchant has a constant number of bits while spending a mone-
tary value 2ℓ. Moreover, the spending protocol does not require complex
zero-knowledge proofs of knowledge such as proofs about double discrete
logarithms. We then propose the first strongly anonymous scheme with
standard unforgeability requirement and realistic generation parameters
while improving the efficiency of the spending phase.

1 Introduction

In e-cash systems, users withdraw coins from a bank and use them to pay mer-
chants (preferably without involving the bank during this protocol). Finally,
merchants deposit coins to the bank. An e-cash system must prevent both a
user from double-spending, and a merchant from depositing twice a coin. The
anonymity of honest users should be protected whereas the identity of cheaters
must be recovered preferably without using a trusted third party.

Divisible e-cash aims at improving the efficiency of both the withdrawal pro-
tocol and the spending of multiple denominations. The underlying idea is to
efficiently withdraw a single divisible coin equivalent to 2L unitary coins. The
user can spend this coin by dividing its monetary value, e.g. by sub-coins of
monetary value 2ℓ, 0 ≤ ℓ ≤ L. In this paper, we revisit the divisible e-cash
approach by targeting the most demanding security model while providing a
realistic parameter generation algorithm and an efficient spending protocol.

1.1 Related Work

A generic construction of divisible e-cash schemes which fulfill the classical prop-
erties of anonymity and strongly unlinkability without using a trusted third party
to revoke the identity of cheaters has been proposed in [9]. The wallet is repre-
sented by a binary tree such that each internal node corresponds to an amount,
i.e. 2L−i if the node’s distance to the root is i, 0 ≤ i ≤ L. Each node in the
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tree is related to a key such that the key of a child can be computed from the
key of one of its ascendants. The main efficiency bottleneck of the practical in-
stantiation given in [9] is that the user has to prove during the spending phase
the correctness from the tree root to the target node without revealing none of
the L − ℓ intermediate values. As one node key is derived from its parents us-
ing a modular exponentiation, the user must prove, for each intermediate value
and using proofs about double discrete logarithms, that they satisfy a certain
relation. Each such proof is expensive and requires Ω(k) group elements to be
communicated in order to guarantee 1/2k soundness error. Moreover, the con-
struction of the binary tree used in [9] (and previously used in [11]) is difficult
to instantiate in practice [1]. Indeed, this construction necessitates to manage
L + 2 groups G0, G1, · · · , GL+1 with prime order p0, p1, · · · , pL+1 respectively,
such that for all 1 ≤ i ≤ L+1,Gi+1 is a subgroup of Z∗pi

. One possibility is to take
pi = 2× pi−1 +1 for all 1 ≤ i ≤ L+1. Using prime number theory, it is possible
to show that the probability to generate such prime numbers is approximately
2−95 for 1024 bits prime numbers and L = 10, which is unpractical.

A very efficient variant of this scheme based on bounded accumulators has
been proposed in [1]. Its main drawback is that it does not fulfills the classical
security property of unforgeability. Indeed, it is possible for a malicious user to
withdraw a divisible coin of monetary value L2L whereas the legitimate value is
2L by cheating in the construction of the binary tree of keys during the with-
drawal protocol. Next, the user can spend L2L coins without being detected and
identified. The solution proposed by the authors is that the bank will use the
cut-and-choose method during the withdrawal protocol by flipping a coin b and
executing the withdrawal protocol correctly if b = 1 and asking the user to reveal
her binary tree that is finally dropped if b = 0. If the revealed tree is correct, the
user is honest and the withdrawal protocol is repeated again from the beginning.
If the user is a cheater, a fine of value 2L2L is deducted from the user’s account.
This drawback may be considered as unacceptable from the bank point of view
even if the bank should not loose money “on average”.

1.2 Our Contribution

We revisit the divisible e-cash approach by targeting both the most demand-
ing security model and the effective possibility to instantiate an e-cash system
from a theoretical method. We introduce a new construction based on algebraic
objects to generate the binary tree without any previously mentioned problems
(impracticability of the key generation [9] and unusual security model [1]). We
introduce a new technique to prove the validity of the spending. We show that
it is possible to prove that one node key is derived from its father, which is
impossible in the proposal of [1]. This enables us to prove that one node key is
derived from only its father and we do it only once instead of (L−ℓ) times in the
scheme proposed in [9] for spending 2ℓ coins from a divisible coin of 2L coins.
Next, we prove the remainder of the paths from the spent node to the leaves
using a variant of the accumulator technique from [1]. In our construction, the
spender only sends to the merchant a constant number of bits to spend 2ℓ coins.
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2 Preliminaries

2.1 Construction of the binary tree of keys

In the following, any divisible coin of monetary value 2L is assigned to a binary
tree with L + 2 levels, as done in [9]. The value of the tree root (at level 0) is
2L. Any other internal node in the tree has a value corresponding to half of the
amount of its parent node. The leaves (at level L+ 1) have no monetary value.
For every level i, 0 ≤ i ≤ L+ 1, the 2i nodes are assigned keys denoted by ki,j
with 0 ≤ j ≤ 2i − 1. The following rule must be satisfied in order to protect
over-spending (c.f. Definition 3): when a node n is used, none of descendant and
ancestor nodes of n can be used, and no node can be used more than once.

We now describe a new way to generate the binary tree of keys based on
algebraic objects which can be efficiently generated. Let q, p, P be three primes
such that p is of size lp, q is of size lq and divides p − 1, and P = 2p + 1. We
denote by Gq (resp. Gp) the subgroup of Z∗p (resp. Z∗P ) of order q (resp. p) and
g0, g1 are two generators of Gq. The keys of the tree are computed from the root
to the leaves as follows. Given a key ki,j with 0 ≤ i ≤ L and 0 ≤ j ≤ 2i−1 of an
internal node, the two keys related to its two direct descendants are computed

as follows: ki+1,2j = g
ki,j (mod q)
0 (mod p) and ki+1,2j+1 = g

ki,j (mod q)
1 (mod p).

2.2 Discrete Log Relation Sets

Roughly speaking, a Zero Knowledge Proof of Knowledge (ZKPK) is an inter-
active protocol during which a prover proves to a verifier that he knows a set
of secret values α1, . . . , αq that verify a given relation R, without revealing the
secret values; we denote it by Pok(α1, . . . , αq : R(α1, . . . , αq)). In the following,
the secret values are discrete logarithms in relations constructed over a group ei-
ther of prime or unknown order. These constructions should verify the soundness
and zero-knowledge properties [8, 4]. The relation R can be a proof of knowledge
of a discrete logarithm denoted by Pok(α : y = gα), a proof of knowledge of
a representation, denoted by Pok(α1, . . . , αq : y = gα1

1 . . . g
αq
q ), or a proof of

equality of discrete logarithms, denoted by Pok(α : y = gα ∧ z = hα). Note
that, contrary to [9], we do not use the complex proof of knowledge of double-
discrete logarithms. We apply the Fiat-Shamir heuristic [10] to turn it into a
signature on some message m: Sok(α1, . . . , αq : R(α1, . . . , αq))(m).

2.3 Signature Schemes with Additional Features

Camenisch and Lysyanskaya [7] have proposed various unforgeable signature
schemes based on Pedersen’s commitment scheme to which they add some spe-
cific protocols. There is first an efficient protocol between a user U and a signer
S that permits U to obtain from S a signature σ of some commitment C on
values (x1, . . . , xℓ) unknown from S. S computes CLSign(C) and U obtains
σ = Sign(x1, . . . , xℓ) and second, an efficient proof of knowledge of a signature
of some committed values.
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The Extended Special Signature (ESS+) scheme introduced in [2, 1] is a
variant of the Camenisch-Lysyanskaya (CL) signature scheme that allows to
sign a block of messages, one of them being an element in a cyclic group. The
user obtains a signature σ = Sign(X,x1, . . . , xℓ) where X is an element of the
multiplicative group while the xi’s are exponents. In our divisible e-cash system,
we may use the signature scheme described in [1] together with the following zero-
knowledge proof of knowledge: Pok(X,x1, · · · , xℓ, σ : σ = Sign(X,x1, · · · , xℓ)),
which is unforgeable under the AWSM assumption [2]. Note that any signature
scheme with the same features can also be used.

2.4 Bounded Accumulators

An accumulator scheme Acc is a method which permits to accumulate a large set
of objects in a single short value. It next provides evidence that a given object
is contained in the accumulator by producing a related witness. We denote by
x ∈ Acc or (x,w) ∈ Acc that the value x is accumulated in Acc, possibly with the
witness w. It is possible to prove (in a zero-knowledge manner) that one (secret)
value is truly accumulated in a given accumulator such that the computation and
the verification of the proof do not depend on the number of accumulated values.
The main accumulator schemes are described in [6, 12, 5]. As noticed in [2], the
proposal given in [12] (and this is also the case for [5]) is bounded in the sense that
it should not be possible to accumulate more than a given number s of objects,
this number being stated at the key generation process. In our scheme, the
payer needs to prove that she knows a secret accumulator Acc certified by some
authorities in which several revealed values x1, · · · , xℓ are accumulated, that is
Pok(w1, · · · , wℓ,Acc, σ : (x1, w1) ∈ Acc ∧ · · · ∧ (xℓ, wℓ) ∈ Acc ∧ σ = Sign(Acc)),
also denoted Pok(Acc, σ : (x1, · · · , xℓ) ∈ Acc∧σ = Sign(Acc)). This new feature
obviously not introduce any new flaw in the accumulator scheme. In Appendix A,
we describe a construction such that this proof does not depend on the number
ℓ of revealed values.

3 Model for Divisible E-cash

3.1 Procedures for Divisible E-cash

Three types of actors are involved in a divisible e-cash system: the bank B,
the user U and the merchant M. We denote by λ the security parameter. The
monetary value of a divisible coin is fixed to 2L. A divisible e-cash system S can
be defined by the following polynomial-time procedures:

– Setup(1λ) is a probabilistic algorithm which outputs the parameters of the
system param. In the following, param and 1λ are implicitly in the input of
all algorithms and protocols;

– BKeyGen() is a probabilistic algorithm which outputs (bsk, bpk) as the
secret and public keys of the bank, respectively. A database cdb of all spent
coins is initialized to the empty set ϵ;
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– UKeyGen() is a probabilistic algorithm which outputs (usk, upk) as the
secret and public keys of the user, respectively. Note that the same algorithm
is executed by the merchants to get (msk,mpk);

– Withdraw[B(bsk)←→ U(usk, bpk)] is a protocol which permits U to with-
draw a divisible coin co, while the bank outputs its view viewW;

– Spend[U(usk, co, bpk, ℓ)←→M(msk, bpk)] is a protocol which permits U to
spend a value 2ℓ from the divisible coin co to the merchant M. The user
outputs a new state for co andM outputs the received coin rco;

– Deposit[M(msk, rco, bpk) ←→ B(bsk,mpk, cdb)] is a protocol which per-
mits M to deposit a coin rco to the bank. The bank outputs either 1 and
the monetary value 2ℓ, or executes the algorithm Identify if the database
cdb already contains the serial number in rco. This procedure is sometimes
written Deposit(rco) for simplicity.

– Identify(rco, cdb) (or Identify(rco)) for short) is an algorithm which out-
puts the public key upk of a fraudulent player (either a user or a merchant)
together with a proof πG;

– VerifyGuilt(rco, cdb, upk, πG) is an algorithm which outputs 1 if πG is a
valid proof that the player’s public key upk has made a fraud during the
spending of the coin rco, and 0 otherwise.

In the following, it is assumed that if an honest user runs a Withdraw protocol
with an honest bank, then neither will output an error message. If an honest
user runs a Spend protocol with an honest merchant, then the merchant always
accept the coin.

3.2 Security Properties

The adversary A interacts with a challenger C in order to break a security prop-
erty. The adversary A has access to the procedures of the system and to the
parameters param. In addition, two oracles are defined in order to add and cor-
rupt users: AddU() and CorruptU(j), where j is related to the user public
key uskj . In the following, the execution of A with access to the oracle Xxxx
and with input e is denoted by AXxxx(e).

Unforgeability. It guarantees that no coalition of players can deposit more
coins than they have withdrawn from the bank.

Experiment Expunforge
S,A (λ):

– (param)←− Setup(λ),
– (bsk, bpk)←− BKeyGen(), (mpk)←− A()
– dc←− 0, sp←− 0, cont ←− true,
– while (cont == true),

b←−Withdraw[C(bsk)←→ A(bpk)]
if (b == 1), then dc←− dc + 1
(rco, ℓ)←− A(bpk)

if (Deposit(rco) == 1), then sp←− sp + 2ℓ

cont ←− A()

– if 2L · dc < sp return 1
– return 0
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The success probability ofA is defined by SuccunforgeS,A (λ) = Pr
[
ExpunforgeS,A (λ) = 1

]
.

Definition 1 (Unforgeability). A system S is unforgeable if for any polynomial-

-time adversary A, the success probability SuccunforgeS,A (·) is negligible.

Anonymity. It guarantees that the bank, even helped by malicious users, can-
not learn anything about a spending other than what is available from side
information from the environment. In the following experiment, b is a bit.

Experiment Expanon−b
S,A (λ):

– (param)←− Setup(λ), (bpk)←− A()

– (upk0, upk1)←− A
Withdraw,Spend,AddU,CorruptU()

– rco←− Spend[C(uskb)←→ A()]

– return b′ ←− AWithdraw,Spend,AddU,CorruptU(rco)

The advantage of A for the anonymity experiment is defined by:

AdvanonS,A (λ) = Pr
[
Expanon−1S,A (λ) = 1

]
− Pr

[
Expanon−0S,A (λ) = 1

]
.

Definition 2 (Anonymity). A system S is anonymous if for any polynomial-
-time adversary A, the adversary advantage AdvanonS,A (·) is negligible.

Identification of double-spenders. From the bank’s point of view, no col-
lection of users should be able to double-spend a coin without revealing one
of their identities.

Experiment Expidds
S,A(λ):

– (param)←− Setup(λ), (bsk, bpk)←− BKeyGen(),

– rco←− AWithdraw,Spend,AddU,CorruptU(bpk)
– if

(
Deposit(rco) == 0 ∧ VerifGuilt(rco, Identify(rco)) == 0

)
return 1

– return 0

The success probability ofA is defined by SucciddsS,A(λ) = Pr
[
ExpiddsS,A(λ) = 1

]
.

Definition 3 (Identification of double spender). A system S identifies
double-spender if for any polynomial-time adversary A, the success proba-
bility SucciddsS,A(·) is negligible.

Exculpability. It guarantees that the bank, even cooperating with malicious
users, cannot falsely accuse honest users from having double-spent a coin.
In the experiment, CU is the set of corrupted users.

Experiment Expexculp
S,A (λ):

– (param)←− Setup(λ), (bpk)←− A()
– cont ←− true, CU ←− ∅
– while (cont == true),

(j, cont)←− AWithdraw,Spend,AddU,CorruptU(CU), CU ←− CU ∪ {upkj}
– rco←− AWithdraw,Spend,AddU,CorruptU()
– if

(
Identify(rco) = (upk, πG) ∧ VerifyGuilt(rco, upk, πG) = 1 ∧ upk /∈ CU

)
return 1

– return 0

The success probability ofA is defined by SuccexculpS,A (λ) = Pr
[
ExpexculpS,A (λ) = 1

]
.

Definition 4 (Exculpability). A system S is exculpable if for any polynomial-

-time adversary A, the success probability SuccexculpS,A (·) is negligible.
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4 Description of Our Divisible E-cash Construction

4.1 Setup and Key Generation Procedures

A divisible coin has a value set to 2L, where L is a positive integer. As in [9], a
divisible coin in our system is represented by a binary tree of L + 2 levels and
the leaves have no value.

Let λ be the security parameter. Let q, p, P be three primes such that q
divides p − 1 and P = 2p + 1. The size of p (resp. q) is denoted by lp (resp.
lq). We denote by Gq (resp. Gp) the subgroup of Z∗p (resp. Z∗P ) or order q (resp.
p); g0 and g1 (resp. G and H) are two generators of Gq (resp. Gp). Finally, let
H : {0, 1}∗ −→ Z∗p be a collision-resistant hash function.

The parameters of L+2 bounded accumulators Acc,Acc1, · · · ,AccL+1 on the
cyclic group Gp are generated during the Setup procedure (see Appendix A).
The accumulator Acc is bounded to 2L+2−2 in order to accumulate all the keys
of nodes in the tree from level 1 to level L + 1 (and thus the key of the root
is not accumulated in Acc). The accumulator Acci is bounded to 2i in order to
accumulate all the keys of nodes at level i, with i ∈ [1, L + 1]. Then, it is not
possible to accumulate more than 2i keys of value 2L−i (see Figure 1).

σ = Sign(Acc, usk, s)

k0,0

k1,0 = g
k0,0
0

k2,0 = g
k1,0
0 k2,1 = g

k1,0
1 k2,2 = g

k1,1
0

k3,2 k3,3 k3,4 k3,5 k3,6k3,1k3,0

k1,1 = g
k0,0
1

k2,3 = g
k1,1
1

k3,7

Acc1 = Acc(k1,0, k1,1)

Acc2 = Acc(k2,0, · · · , k2,3)

Acc3 = Acc(k3,0, · · · , k3,7)

σ1 = Sign(Acc1, s, 1)

σ2 = Sign(Acc2, s, 2)

σ3 = Sign(Acc3, s, 3)

Acc = Acc(k1,0, · · · , k3,7)

Fig. 1. Our new binary tree for a coin of monetary value 22 with L = 2

The algorithm BKeyGen is performed by the bank in order to generate
a key pair (bsk, bpk) for the signature scheme ESS+ [1] on the group Gp. The
algorithm UKeyGen is executed by any user and merchant of the system. It
consists in randomly choosing a secret usk ∈ Z∗p (resp. msk ∈ Z∗p) and computing

upk = Gusk (resp. mpk = Gmsk). Moreover, any user public key is assumed to
be certified by an authority and the bank can be convinced that it belongs to a
known identified user.

4.2 The Withdrawal Protocol

The withdrawal phase is a protocol between the user U (on input usk and bpk)
and the bank B (on input bsk), which permits U to withdraw a coin of value
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2L. In a nutshell, U computes the keys k0,0, · · · , kL+1,2L+1−1 of the binary tree
and next the accumulators Acc,Acc1, · · · ,AccL+1. Next, B produces L+2 ESS+
signatures on the messages (Acc, usk, s), (Acc1, s, 1), · · · , (AccL+1, s, L+1). These
signatures give a proof of the interaction between the user knowing usk and the
bank. The secret value s is used to link together the L+ 2 signatures of a given
withdrawal protocol knowing that the user and bank contribute randomness to
the value s.

An important remark is that it is not necessary for the bank to check if
the tree of keys is well-formed or if the accumulators are well-formed since they
are bounded using appropriate values. As explained in the following, if the user
cheats in the construction of the tree of keys or in the construction of the accu-
mulated values, he won’t be able to correctly execute the spending protocol, as
the merchant will be able to make all validity checks. More formally, the protocol
works as follows:

– U chooses at random the key root k0,0 ∈ Z∗p and computes the keys of the

full tree: given a key node ki,j with 0 ≤ i ≤ L and 0 ≤ j ≤ 2i − 1, the keys

related to its two direct descendants are ki+1,2j = g
ki,j (mod q)
0 (mod p) and

ki+1,2j+1 = g
ki,j (mod q)
1 (mod p). The keys are stored in a table tr;

– U accumulates the keys ki,j , for all 1 ≤ i ≤ L+1 and 0 ≤ j ≤ 2i − 1, in Acc
and sends it to B. Next U and B interact using the ESS+ interactive protocol
in order to get a signature σ on (Acc, usk, s), where s ∈ Z∗p is a secret value
only known by the user and jointly generated by both U and B. For this
purpose, the user commits to the values usk and s′ and the bank modifies
s′ to s = s′ + s′′ (without learning any information about s′), produces the
commitment to Acc, usk and s and signs this commitment. Note that B
can verify that usk is related to a known public key upk (i.e. by making U
produces a proof of knowledge of usk such that upk = Gusk).

– for every i such that 1 ≤ i ≤ L+1, U accumulates in Acci the keys ki,j , with
j ∈ [0; 2i−1]. Next, U sends Acc1, · · · ,AccL+1 to B and interacts with B using
the ESS+ interactive protocol in order to get the signatures σ, σ1, · · · , σL+1

on (Acc1, s, 1), · · · , (AccL+1, s, L+1), respectively. For this purpose, the user
commits s′ and proves that this is the same as in the previous step. The bank
verifies the proof, again modifies s′ to s = s′+s′′, produces the commitment
on Acci, s and i and signs it. Note that one single commitment to s′ by the
user is enough to obtain all the signatures.

At the end of this protocol, U outputs a coin co = {tr, Acc,Acc1, · · · ,AccL+1,
σ, σ1, · · · , σL+1, spc}, where spc ← ϵ will contain information on spent nodes.
Note that tr can be either erased or kept to avoid the re-computation of the key
nodes during the spending phase.

4.3 The Spending Phase

We suppose that a user U , with keys (usk, upk) and with a coin co = {tr, Acc,
Acc1, · · · , AccL+1, σ, σ1, · · · , σL+1, spc} wants to spend a value 2ℓ ≤ 2L to
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a merchant M (with input msk and bpk). Informally, U chooses an unspent
node j0 in the tree at level L − ℓ and computes 1) a serial number S as the
concatenation of the keys kL−ℓ+1,2j0 and kL−ℓ+1,2j0+1 of the two descendant
nodes and 2) the security tag using the key kL−ℓ,j0 . In addition, U produces a
proof of validity of the accumulators and the ESS+ signatures coming from the
withdrawal protocol. More formally, the protocol works as follow:

– U receives M’s public key mpk and the proof π that M knows msk. Next,
U and M can compute R = H(mpk∥info) where info is a pre-determined
public information including the monetary value 2ℓ and e.g. current time;

– U chooses in the binary tree an unspent node j0 at level L− ℓ and finds in tr
(or recompute) the corresponding key kL−ℓ,j0 and its two direct descendants
kL−ℓ+1,2j0 and kL−ℓ+1,2j0+1;

– the serial number is then formed as S = kL−ℓ+1,2j0∥kL−ℓ+1,2j0+1 and the
security tag of this spending is T = upk ·HR·kL−ℓ,j0 ;

– finally U produces the signature of knowledge:

Π = Sok
(
usk, kL−ℓ,j0 , s,Acc, σ,AccL−ℓ+1, σL−ℓ+1 :

T = Gusk · (HR)kL−ℓ,j0 ∧ kL−ℓ+1,2j0 = g
kL−ℓ,j0
0 ∧ kL−ℓ+1,2j0+1 = g

kL−ℓ,j0
1 ∧

(kL−ℓ+1,2j0 , kL−ℓ+1,2j0+1, . . . , kL+1,2ℓ+1j0 , · · · , kL+1,2ℓ+1(j0+1)−1) ∈ Acc ∧
(kL−ℓ+1,2j0 , kL−ℓ+1,2j0+1) ∈ AccL−ℓ+1 ∧ σ = Sign(Acc, u, s)

σL−ℓ+1 = Sign(AccL−ℓ+1, s, L− ℓ+ 1)
)
(mpk∥info∥R∥S∥T )

The spent coin is rco = {ℓ, S, T,Π,R}. Its validity is checked byM by computing
all the descendant keys of S before performing the verification of Π (see below).
Moreover, the merchant, using the parameters used in the proof of knowledge Π,
can check that the accumulator AccL−ℓ+1 has been signed with the value L−ℓ+1,
that the used parameters correspond to the ones of the right bounded accumu-
lator. The divisible coin of U is updated as co = {tr, Acc,Acc1, · · · ,AccL+1, σ,
σ1, · · · , σL+1, spc = spc ∪ {(L− ℓ, j0)}}.

The proof Π is done non-interactively by using usual zero-knowledge proofs
of knowledge (see Appendix B) and the Fiat-Shamir heuristic [10], in the random
oracle model, using m = mpk∥info∥R∥S∥T as a message. It proves that

– the security tag T is correctly computed from usk, R and kL−ℓ,j0 ;
– the serial number S is correctly computed from kL−ℓ,j0 ;
– all the descendants of the node kL−ℓ,j0 are accumulated in Acc;
– kL−ℓ+1,2j0 and kL−ℓ+1,2j0+1 are accumulated in AccL−ℓ+1;
– the values Acc, usk and s (resp. AccL−ℓ+1, s and L − ℓ + 1) are signed by

the bank in σ (resp. σL−ℓ+1).

Note that the spender only needs to prove that kL−ℓ+1,2j0 and kL−ℓ+1,2j0+1

are correctly derived from kL−ℓ,j0 . This is not necessary for the other descendant
nodes. In fact, the receiver can easily compute all the descendant of kL−ℓ+1,2j0

and kL−ℓ+1,2j0+1. As they are all accumulated into Acc and both kL−ℓ+1,2j0 and
kL−ℓ+1,2j0+1 are accumulated in AccL−ℓ+1, it is enough to prove that the spent
coin is correct.

Appeared in R. Sion (Ed.): Financial Cryptography 2010, preproceedings.
c⃝ Springer-Verlag Berlin Heidelberg 2010



As shown in Appendix B, this proof is done in constant time. It does not
depend on the monetary value 2ℓ which is spent, except when the spender needs
to develop a polynomial of degree 2ℓ, which is quite immediate in practice.
Moreover, as the merchant can compute all the keys from the ones used in the
serial number to the ones of the leaves, the user does not need to send them to
the merchant. Thus, the transaction data sent to the merchant has a constant
number of bits while spending a monetary value of 2ℓ.

4.4 Deposit and Detection of Frauds

The deposit of a coin rco = {ℓ, S, T,Π,R} with value ℓ is done by M which
sends it to B with a signature of the deposit request. First B verifies the cor-
rectness of Π. If it is correct, B computes the keys related to the 2ℓ+1 leaves
of S = kL−ℓ+1,2j0∥kL−ℓ+1,2j0+1 at level L in the tree. If at least one of these
keys is already in its database cdb, B executes the procedure of double-spender
identification. Else, B adds the 2ℓ+1 leaf keys in cdb and outputs 1. B could store
only 2ℓ keys, i.e. it will always store leaves that are “right” (or left) child.

In case of a double-spending detection, the bank B, given two coins rco1 =
{ℓ1, S1, T1, Π1 ,R1} and rco2 = {ℓ2, S2, T2, Π2, R2}, tests if R1 = R2 which
means thatM is a cheater since the hash function H is collision-resistant. The
proof of the cheat consists in publishing both deposits (including two signatures
ofM on the deposit request for the same coin). Else B will identify a user public
key using the same technique as described in [9]. We distinguish two cases:

1. if ℓ1 = ℓ2 = ℓ, then the same node key kL−ℓ,j0 has been used in both T1 and

T2. Thus, B computes upk =
(
TR2
1 /TR1

2

) 1
R2−R1 ;

2. if ℓ1 ̸= ℓ2 (e.g. ℓ1 < ℓ2), then from S2, B can compute kL−ℓ1,j0 such that
T1 = upk ·HR1·kL−ℓ1,j0 and thus retrieve upk = T1/H

R1·kL−ℓ1,j0 ;

Finally, B outputs the proof πG based on the two entries in the database cdb.

4.5 Efficiency Considerations

We compare the efficiency of the strongly anonymous divisible e-cash schemes of
the state-of-the-art [9, 1] with our new proposal. We give in Table 1 the computa-
tion cost of the binary tree, the time complexity of the withdrawal and spending
phases and the size of the divisible coin, where Exp is a modular exponentiation,
and Dev(i) is the time needed to develop a polynomial of degree i. We differen-
tiate in our comparison both types of secure divisible e-cash systems depending
on the security model, i.e. classical model with truly unforgeability [9] and un-
usual model with a statistical balance assumption [1]. We do not include the
complexity of the deposit phase and the size of the database which are similar
in the three schemes.

Based on Table 1, we can conclude that our new proposal is significantly
more efficient that the one of Canard-Gouget [9], regarding the spending phase,
with the same security level. Our new proposal is little bit less efficient than the
Au et al. one [1] but with a better security result. We consequently obtain the
best trade off between previous approaches, considering efficiency and security.

Appeared in R. Sion (Ed.): Financial Cryptography 2010, preproceedings.
c⃝ Springer-Verlag Berlin Heidelberg 2010



Divisible e-cash scheme Au et al. [1] Canard-Gouget [9] this paper

Model choice Statistical balance Unforgeability

Binary tree (2L+1 − 2)Exp (2L+2 − 2)Exp (2L+2 − 2)Exp

computation (not necessarily computed)

Divisible coin (2L+1 − 2)|p|+ (L+ 1)Sign 2|p|+ (1)Sign (2L+2 − 2)|p|+ (L+ 2)Sign

storage size +(L+ 1)Acc +(L+ 2)Acc

Computational complexity (L+ 1)Sign (1)Sign (L+ 2)Sign

of withdraw +(L+ 1)Acc +(L+ 2)Acc

Computational complexity Exp+ Sok
(
Sign (i+ 3)Exp+ Sok

(
Sign Exp+Dev(2ℓ)+

of spending 2ℓ +Acc+ 2Exp
)

+O((L− ℓ)t)Exp
)

Sok
(
2Sign+ 2Acc+ 3Exp

)
Spending 2|p|+ Sok

(
Sign 3|p|+ Sok

(
Sign 2|p|+ |P |+ Sok

(
2Sign

transfer size +Acc+ 2Exp
)

+O((L− ℓ)t)Exp
)

+2Acc+ 3Exp
)

Table 1. Efficiency comparison between related work and our proposal

4.6 Security Theorem

We give the statement of security for our new proposed scheme.

Theorem 1. In the random oracle model, our divisible e-cash scheme fulfills
(i) the unforgeability under the assumptions that ESS is unforgeable and the
bounded accumulator scheme fulfills the bound property; (ii) the anonymity un-
der the zero-knowledge property of ZKPK and the DDH assumption; (iii) the
identification of double-spender under the unforgeability of ESS and (iv) the ex-
culpability under the one-more discrete logarithm assumption.

Proof. We consider the four properties.
– Anonymity: we use a reduced “game proof technique” from Shoup. We denote
by ϵ the probability that A succeeds in linking the spending protocol V1 to a
spending or withdrawal protocol.

During V1, A gets a serial number S, a security tag T , a zero-knowledge
proof of knowledge Π and a value R. It is obvious that R does not reveal any
Shannon information on the user identity. Under the zero-knowledge property
of the proof of knowledge Π, in the random oracle model, the value Π does
not help A in winning the anonymity experiment. Thus, V1 is replaced by V2 in
which A gets only S and T . The difference of probability between V1 and V2 is
the probability of success of A in breaking the zero-knowledge property of Π,
namely SucczkΠ,A(λ).
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In V2, we focus on T . The secret key kL−ℓ,j0 is used only in the computation

of T and Π. Indeed, knowing T = upk · HRk and T ′ = upk′ · HR′k′
, A has to

decide if the same upk is embedded in both T and T ′. This is assumed to be
infeasible under the discrete logarithm (DL) assumption. Thus, V2 is replaced
by V3 in which A gets only S. The difference of probability between V2 and V3 is
the probability of success of A in breaking the DL problem, namely SuccdlA(λ).

Finally, from S, A needs to decide whether or not two different node keys
k and k′ are related to the same root key k0. This is assumed to be infeasible
under a stronger variant of the Decisional Diffie-Hellman assumption (see [9] for
details). We denote by AdvddhA (λ) the corresponding success probability.

We conclude that AdvanonDCS,A(λ) ≤ SucczkΠ,A(λ) +AdvddhA (λ).

– Unforgeability: we use a reduction to either the unforgeability of the signa-
ture scheme or to the bound property of the accumulator scheme. Let A be an
adversary that breaks the unforgeability property in polynomial time τ with a
probability of success equal to ϵ. We interact with the black box adversary A by
flipping at random a coin and playing one among two games.

Game 1. We construct a machineM1 that breaks the existential unforgeability
of ESS+ with access to a signing oracle Sign:

– In the Setup procedure,M1 sets the group defined for the signature scheme
as Gp and A is given the public key bpk = spk of the signature scheme.

– when A ask for a withdrawal, dc is incremented by 1 and M1, playing the
role of the bank, interacts with A by interacting with the oracle Sign to
obtain ESS+ signatures. Each time, M1 stores in askdb the signature and
the corresponding messages;

– when A asks for a spending protocol of 2ℓ coins, sp is incremented by 2ℓ and
M1, playing the role of the merchant, rewinds A during its computation of
the zero-knowledge proof of knowledge by using standard techniques (and in
the random oracle model) in order to extract and store in recdb the signatures
and the corresponding messages used by A.

– at any time of the unforgeability experiment, A sets cont = false and with
probability ϵ, we have 2L ·dc < sp. In case there is one entry in recdb\askdb.
This entity is obviously a forgery.

Game 2. We construct a machine M2 that breaks the bound property of the
accumulator scheme:

– In the Setup procedure,M2 sets the group defined for the signature scheme
as Gp and A is given the public key bpk = spk of the signature scheme.
Next,M2 generates the L+2 accumulators.M2 maintains a database accdb
containing all accumulators generated by A together with the bound of the
corresponding bounded accumulator and the obtained accumulated values;

– when A ask for a withdrawal,M2 plays the role of the bank;
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– when A asks for a spending protocol of 2ℓ coins, sp is incremented by 2ℓ and
M2, playing the role of the merchant, rewinds A during its computation
of the zero-knowledge proof of knowledge, using standard technique (and in
the random oracle model) in order to extract the accumulators. Next, M2

stores in accdb the accumulator (if not already present in the database) and
the corresponding accumulated values;

– at any time of the unforgeability experiment, A sets cont = false and with
probability ϵ, we have 2L · dc < sp. In case there is one entry in accdb such
that there are more accumulated values than the bound for this accumulator,
M2 breaks the bound property of the accumulator scheme.

As a consequence, SuccunforgeDCS,A(λ) =
1
2

(
SuccunforgeSign,A(λ) + SuccboundAcc,A(λ)

)
.

– Identification of Double Spender: we use a reduction to the unforgeability
of the signature scheme. Let A be an adversary breaking the identification of
double spender in polynomial time τ with a probability of success ϵ. We consider
a black box adversary and construct a machine M which breaks the unforge-
ability of the signature scheme. We can access to the group Gp, the public key
spk and interact with a signing oracle:

– In the Setup procedure,M sets the group defined for the signature scheme
as Gp and A is given the public key bpk = spk of the signature scheme.

– when A ask for a withdrawal, dc is incremented by 1 and M1, playing the
role of the bank, interacts with A by interacting with the Sign oracle to
obtain ESS+ signatures. Each time, M stores in askdb the signature and
the corresponding messages;

– when A asks for a spending protocol,M, playing the role of the merchant,
rewinds the adversary A during its computation of the zero-knowledge proof
of knowledge to extract and store in recdb the signatures and the correspond-
ing messages used by A;

– at any time of the experiment, A outputs one spent coin rco and, with prob-
ability ϵ, the Deposit and the VerifyGuilt procedures output 0. Thus,
M takes on input rco and the other coin with the same serial number and
extracts, in Π ∈ rco and using standard techniques, both signatures and the
corresponding messages. Necessarily, one of the two signatures is not an out-
put of the signing oracle since the signed upk is not detected by the Identify
algorithm. Thus,M has produced a forge on the signature scheme.

We have SucciddsDCS,A(λ) = SuccunforgeSign,A(λ).

– Exculpability: suppose that an adversary A succeeded in breaking the ex-
culpability property. That means that there are two valid spends with the same
serial number S (or, either S can be computed from S′, or S′ can be computed
from S) and two different proofs Π and Π ′ and two different correct randoms
R and R′. As spendings are correct, the proofs include that both T and T ′ are
well formed. Thus, since the user is honest, A has faked T or T ′.
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We now use A to break the one-more discrete logarithm problem [3]. Given
l + 1 values, we have to find the discrete logarithm of all these values, and we
can ask a discrete logarithm oracle at most l times. We first associate each value
to the public key of one user (assuming there are at most l users) and we ask
the oracle each time A corrupt a user. It is possible to simulate all withdrawals
and spends using standard techniques (in the random oracle model). A finally
outputs two correctly formed T and T ′ and the associated proofs of validity.
Thus, T and T ′ are both formed from the same public key of a honest user.

From the two proofs of validity, we can extract the user secret key and thus
break the one-more discrete logarithm. Indeed, since the user is honest, this
discrete logarithm has not been requested to the oracle. We consequently have
SuccexculpDCS,A(λ) = Succomdl

A (λ), which concludes the proof. ⊓⊔
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A Bounded Accumulator with Additional Procedure

We give a concrete example of accumulator based on [12]. Let G and G̃ be two
cyclic groups of prime order p, G (resp. G̃) is a generator of G (resp. G̃). Let GT
be a multiplicative group of order p. We refer a bilinear structure for the groups
(G, G̃,GT ). Let e be a bilinear map e : G × G̃ −→ GT .

Using [12], the number of values accumulated in a single accumulator is
limited to a fixed number which is here denoted by s. In our construction, we
use a new proof of knowledge, denoted Pok(Acc : (k1, · · · , kℓ) ∈ Acc), to prove
that several values known by the verifier are accumulated in a secret accumulator.

Let U0 ∈ G, Ṽ0 ∈ G̃, α ∈ Z∗p, Ui = Uαi

0 for all i ∈ {1, · · · , s} and Ṽ1 = Ṽ α
0 .

The values (k1, · · · , ks) are accumulated in Acc as Acc = U
∏s

i=1(ki+α)
0 . We de-

note by W the value U
∏

j /∈[1,ℓ](kj+α)

0 . Thus, we have Acc = W
∏

j∈[1,ℓ](kj+α).

Let P(α) =
∏

j∈[1,ℓ](kj + α) =
∑ℓ

j1
pjα

j where the pj ’s are product of the
ki’s and the degree of P is ℓ. More precisely, we assume that there exists a
public function F({k1, · · · , kℓ}) = {p1, · · · , pℓ}. We need to introduce some ad-

ditional public parameters: Ṽi = Ṽ αi

0 for all i ∈ {2, · · · , s}. Then , we have

e(Acc, Ṽ0) = e(W
∏

j∈[1,ℓ](kj+α), Ṽ0) = e(W, Ṽ
∏

j∈[1,ℓ](kj+α)

0 ) = e(W, Ṽ0

∏ℓ
j=1 Ṽ

pj
j ).

In our setting, the values ki’s are public, and thus it is also the case for the
values pj ’s. Our ZKPK is then: Pok

(
Acc,W : e(Acc, v0) = e(W, Ṽ0

∏ℓ
j=1 Ṽ

pj
j )

)
.

B Proof of Validity of a Spending

The first part of the proof, consisting in proving that one knows usk and kL−ℓ,j0
such that T = Gusk · (HR)kL−ℓ,j0 , kL−ℓ+1,2j0 = g

kL−ℓ,j0
0 and kL−ℓ+1,2j0+1 =

g
kL−ℓ,j0
1 is simply done by using standard discrete logarithm based proof of
knowledge. The next part of the proof consists in proving that several values
known by the verifier are accumulated in a secret accumulator which is signed
by the bank, using the ESS+ scheme. We describe the case of AccL−ℓ+1; the
case of Acc is similar.

We first need a proof that the tuple (kL−ℓ+1,2j0 , kL−ℓ+1,2j0+1) ∈ AccL−ℓ+1.
Everyone can compute {p1, p2} = F(kL−ℓ+1,2j0 , kL−ℓ+1,2j0+1). Since there exists

the public relation e(AccL−ℓ+1, Ṽ0) = e(W, P̃ ) with P̃ = Ṽ0Ṽ
p1
1 Ṽ

p2
2 , the second

part of the proof of knowledge is then Pok
(
s,AccL−ℓ+1, σL−ℓ+1 : σL−ℓ+1 =

Sign(AccL−ℓ+1, u) ∧ e(AccL−ℓ+1, Ṽ0) = e(W, P̃ )
)
.

The signature σL−ℓ+1 is an ESS+ signature on the message M = (AccL−ℓ+1,
s, L− ℓ+1). Thus, σL−ℓ+1 is composed by the elements Σ1 = X(AccL−ℓ+1G

a
0)

c,

Σ2 =
(
G1G

a
2G

b
3H

s
1H

L−ℓ+1
2

) 1
x+c and Σ̃3 = H̃c where a, b, c ∈R Z∗p and X,

G0, G1, G2, G3, H1, H2, H̃ are public. These values verify the following re-
lations: e(Σ2, Σ̃3Z̃) = e(G1, H̃)e(G2, H̃)ae(G3, H̃)be(H1, H̃)se(H2, H̃)L−ℓ+1 and
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e(Σ1, H̃) = Y e(AccL−ℓ+1G
a
0 , Σ̃3). The second part of the proof is finally

Pok
(
s,AccL−ℓ+1, Σ1, Σ2, Σ̃3 :

e(AccL−ℓ+1, Ṽ0) = e(W, P̃ ) ∧ e(Σ1, H̃) = Y e(AccL−ℓ+1G
a
0 , Σ̃3) ∧

e(Σ2, Σ̃3Z̃) = e(G1, H̃)e(G2, H̃)ae(G3, H̃)be(H1, H̃)se(H2, H̃)L−ℓ+1
)
.

This proof is generated using standard techniques and the results in [2, 1].
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